974 research outputs found

    Online Matrix Completion Through Nuclear Norm Regularisation

    Get PDF
    It is the main goal of this paper to propose a novel method to perform matrix completion on-line. Motivated by a wide variety of applications, ranging from the design of recommender systems to sensor network localization through seismic data reconstruction, we consider the matrix completion problem when entries of the matrix of interest are observed gradually. Precisely, we place ourselves in the situation where the predictive rule should be refined incrementally, rather than recomputed from scratch each time the sample of observed entries increases. The extension of existing matrix completion methods to the sequential prediction context is indeed a major issue in the Big Data era, and yet little addressed in the literature. The algorithm promoted in this article builds upon the Soft Impute approach introduced in Mazumder et al. (2010). The major novelty essentially arises from the use of a randomised technique for both computing and updating the Singular Value Decomposition (SVD) involved in the algorithm. Though of disarming simplicity, the method proposed turns out to be very efficient, while requiring reduced computations. Several numerical experiments based on real datasets illustrating its performance are displayed, together with preliminary results giving it a theoretical basis.Comment: Corrected a typo in the affiliatio

    First-Order Query Evaluation with Cardinality Conditions

    Full text link
    We study an extension of first-order logic that allows to express cardinality conditions in a similar way as SQL's COUNT operator. The corresponding logic FOC(P) was introduced by Kuske and Schweikardt (LICS'17), who showed that query evaluation for this logic is fixed-parameter tractable on classes of structures (or databases) of bounded degree. In the present paper, we first show that the fixed-parameter tractability of FOC(P) cannot even be generalised to very simple classes of structures of unbounded degree such as unranked trees or strings with a linear order relation. Then we identify a fragment FOC1(P) of FOC(P) which is still sufficiently strong to express standard applications of SQL's COUNT operator. Our main result shows that query evaluation for FOC1(P) is fixed-parameter tractable with almost linear running time on nowhere dense classes of structures. As a corollary, we also obtain a fixed-parameter tractable algorithm for counting the number of tuples satisfying a query over nowhere dense classes of structures

    XTree for Declarative XML Querying

    Full text link

    The effect of elevated temperature exposure on the fracture toughness of solid wood and structural wood composites

    Get PDF
    This is the author's peer-reviewed final manuscript, as accepted by the publisher. The published article is copyrighted by Springer and can be found at: http://www.springer.com/life+sciences/forestry/journal/226.Fracture toughness of wood and wood composites has traditionally been characterized by a stress intensity factor, an initiation strain energy release rate (G[subscript init]) or a total energy to fracture (G[subscript f]). These parameters provide incomplete fracture characterization for these materials because the toughness changes as the crack propagates. Thus for materials such as wood, oriented strand board (OSB), plywood and laminated veneer lumber (LVL), it is essential to characterize the fracture properties during crack propagation by measuring a full crack resistant or R curve. This study used energy methods during crack propagation to measure full R curves and then compared the fracture properties of wood and various wood-based composites such as, OSB, LVL and plywood. The effect of exposure to elevated temperature on fracture properties of these materials was also studied. The steady state energy release rate (G[subscript SS]) of wood was lower than that of wood composites such as LVL, plywood and OSB. The resin in wood composites provides them with a higher fracture toughness compared to solid lumber. Depending upon the internal structure of the material the mode of failure also varied. With exposure to elevated temperatures, G[subscript SS] for all materials decreased while the failure mode remained the same. The scatter associated with conventional bond strength tests, such as internal bond (IB) and bond classification tests, renders any statistical comparison using those tests difficult. In contrast, fracture tests with R curve analysis may provide an improved tool for characterization of bond quality in wood composites

    Structurally Tractable Uncertain Data

    Full text link
    Many data management applications must deal with data which is uncertain, incomplete, or noisy. However, on existing uncertain data representations, we cannot tractably perform the important query evaluation tasks of determining query possibility, certainty, or probability: these problems are hard on arbitrary uncertain input instances. We thus ask whether we could restrict the structure of uncertain data so as to guarantee the tractability of exact query evaluation. We present our tractability results for tree and tree-like uncertain data, and a vision for probabilistic rule reasoning. We also study uncertainty about order, proposing a suitable representation, and study uncertain data conditioned by additional observations.Comment: 11 pages, 1 figure, 1 table. To appear in SIGMOD/PODS PhD Symposium 201

    Schema Independent Relational Learning

    Full text link
    Learning novel concepts and relations from relational databases is an important problem with many applications in database systems and machine learning. Relational learning algorithms learn the definition of a new relation in terms of existing relations in the database. Nevertheless, the same data set may be represented under different schemas for various reasons, such as efficiency, data quality, and usability. Unfortunately, the output of current relational learning algorithms tends to vary quite substantially over the choice of schema, both in terms of learning accuracy and efficiency. This variation complicates their off-the-shelf application. In this paper, we introduce and formalize the property of schema independence of relational learning algorithms, and study both the theoretical and empirical dependence of existing algorithms on the common class of (de) composition schema transformations. We study both sample-based learning algorithms, which learn from sets of labeled examples, and query-based algorithms, which learn by asking queries to an oracle. We prove that current relational learning algorithms are generally not schema independent. For query-based learning algorithms we show that the (de) composition transformations influence their query complexity. We propose Castor, a sample-based relational learning algorithm that achieves schema independence by leveraging data dependencies. We support the theoretical results with an empirical study that demonstrates the schema dependence/independence of several algorithms on existing benchmark and real-world datasets under (de) compositions

    The tractability frontier of well-designed SPARQL queries

    Full text link
    We study the complexity of query evaluation of SPARQL queries. We focus on the fundamental fragment of well-designed SPARQL restricted to the AND, OPTIONAL and UNION operators. Our main result is a structural characterisation of the classes of well-designed queries that can be evaluated in polynomial time. In particular, we introduce a new notion of width called domination width, which relies on the well-known notion of treewidth. We show that, under some complexity theoretic assumptions, the classes of well-designed queries that can be evaluated in polynomial time are precisely those of bounded domination width

    Towards an ASM thesis for reflective sequential algorithms

    Full text link
    Starting from Gurevich's thesis for sequential algorithms (the so-called "sequential ASM thesis"), we propose a characterization of the behaviour of sequential algorithms enriched with reflection. That is, we present a set of postulates which we conjecture capture the fundamental properties of reflective sequential algorithms (RSAs). Then we look at the plausibility of an ASM thesis for the class of RSAs, defining a model of abstract state machine (which we call reflective ASM) that we conjecture captures the class of RSAs as defined by our postulates

    A simple and optimal ancestry labeling scheme for trees

    Full text link
    We present a lgn+2lglgn+3\lg n + 2 \lg \lg n+3 ancestry labeling scheme for trees. The problem was first presented by Kannan et al. [STOC 88'] along with a simple 2lgn2 \lg n solution. Motivated by applications to XML files, the label size was improved incrementally over the course of more than 20 years by a series of papers. The last, due to Fraigniaud and Korman [STOC 10'], presented an asymptotically optimal lgn+4lglgn+O(1)\lg n + 4 \lg \lg n+O(1) labeling scheme using non-trivial tree-decomposition techniques. By providing a framework generalizing interval based labeling schemes, we obtain a simple, yet asymptotically optimal solution to the problem. Furthermore, our labeling scheme is attained by a small modification of the original 2lgn2 \lg n solution.Comment: 12 pages, 1 figure. To appear at ICALP'1

    An Entailment Relation for Reasoning on the Web

    Get PDF
    Reasoning on the Web is receiving an increasing attention because of emerging fields such as Web adaption and Semantic Web. Indeed, the advanced functionalities striven for in these fields call for reasoning capabilities. Reasoning on the Web, however, is usually done using existing techniques rarely fitting the Web. As a consequence, additional data processing like data conversion from Web formats (e.g. XML or HTML) into some other formats (e.g. classical logic terms and formulas) is often needed and aspects of the Web (e.g. its inherent inconsistency) are neglected. This article first gives requirements for an entailment tuned to reasoning on the Web. Then, it describes how classical logic’s entailment can be modified so as to enforce these requirements. Finally, it discusses how the proposed entailment can be used in applying logic programming to reasoning on the Web
    corecore